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Abstract
In this paper we extend the ladder proof of nonlocality without inequalities for
two spin-half particles given by Boschi et al (Boschi D et al 1997 Phys. Rev.
Lett. 79 2755) to the case in which the measurement settings of the apparatus
measuring one of the particles are different from the measurement settings of
the apparatus measuring the other particle. It is shown that, in any case, the
proportion of particle pairs for which the contradiction with local realism goes
through is maximized when the measurement settings are the same for each
apparatus. Also we write down a Bell inequality for the experiment in question
which is violated by quantum mechanics by an amount which is twice as
much as the amount by which quantum mechanics violates the Bell inequality
considered in the above paper by Boschi et al.

PACS numbers: 03.65.Ud, 03.65.Ta

1. Introduction

In 1993 Hardy gave a proof of Bell’s theorem without inequalities for two spin-half particles
(denoted by A and B) and two alternative (noncommuting) observables per particle [1].
Subsequently, Hardy [2, 3] generalized this proof by considering an arbitrary number of
observables per particle (from now on we will refer to this latter proof as the ‘ladder’ proof ).
The consideration of more than two observables per particle results in an improvement of
the percentage of particle pairs for which it is possible to obtain a contradiction with local
realism—it grows from 9% when only two observables are considered to almost 50% which is
obtained for a large number of observables and a state that is not quite maximally entangled.
The ladder proof given in [2, 3], however, is not quite general. This is because the parameter
(measurement setting) ck , k = 0, 1, . . . ,K, defining the observable Ak(ck) for particle A, is
the same as the parameter defining the corresponding observable Bk(ck) for particle B (see
equations (2)–(5) of [3]). In this paper we relax this restriction so that the observables Ak and
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Bk are initially specified by the independent parameters αk and βk, respectively. As we shall
see, the resulting probability of getting a contradiction between the predictions of quantum
mechanics and local realism will then explicitly depend on the choice of one of the observables
involved, say AK , through the corresponding parameter αK . This probability also depends on
the number of settings (observables) considered and the quantum state describing the particles.
We will show, however, that, for any given quantum state and any given K, the said probability
is maximized whenever αk = βk for each k, that is, the probability is maximal when the setting
defining the observable Ak has the same value as the setting defining Bk . Finally, we will
write down a Bell inequality (see equation (22)) for the experiment in question which is a
generalization of the CHSH inequality [4] to the case of an arbitrary number of observables
per particle [5]. This inequality is violated by the relevant quantum predictions by an amount
which is twice the amount by which quantum mechanics violates the Bell inequality considered
in [3].

2. Extension of the original ladder proof

Consider two spin-half particles in the entangled state

|�〉 = α|+〉A|+〉B − β|−〉A|−〉B (1)

where {|+〉A, |−〉A} ({|+〉B, |−〉B}) is an orthonormal basis in the state space of particle A

(B). Following [2, 3], it will be assumed that α and β are taken to be real and positive, with
α2 + β2 = 1. For each run of the experiment, on particle A (B) we make a measurement of
one two-valued (±1) observable chosen from the set of K + 1 observables {Ak} ({Bk}), where
Ak and Bk are defined as Ak = ∣∣a+

k

〉〈
a+

k

∣∣ − ∣∣a−
k

〉〈
a−

k

∣∣ and Bk = ∣∣b+
k

〉〈
b+

k

∣∣ − ∣∣b−
k

〉〈
b−

k

∣∣, and where
the eigenvectors

∣∣a±
k

〉
and

∣∣b±
k

〉
are related to the original basis vectors |±〉A and |±〉B by∣∣a+

k

〉 = cos αk|+〉A + sin αk|−〉A (2)

|a−
k 〉 = −sin αk|+〉A + cos αk|−〉A (3)∣∣b+
k

〉 = cos βk|+〉B + sin βk|−〉B (4)∣∣b−
k

〉 = −sin βk|+〉B + cos βk|−〉B. (5)

On the other hand, the observables Ak and Bk are required to satisfy the following
conditions [2, 3]:

PK = P(AK = +1, BK = +1) �= 0 (6)

P(Ak = +1, Bk−1 = −1) = 0 for k = 1 to K (7)

P(Ak−1 = −1, Bk = +1) = 0 for k = 1 to K (8)

P(A0 = +1, B0 = +1) = 0 (9)

where P(Ak = m,Bk′ = n) denotes the joint probability that the outcome of the measurement
of Ak on particle A is m, and that the outcome of the measurement of Bk′ on particle B is
n, the pair of particles A and B being in the state (1). The nonlocality argument based on
equations (6)–(9) is well known [1–3], and it will not be repeated here. We merely note that
the magnitude of the probability PK appearing in (6) gives the proportion of particle pairs
for which the contradiction between quantum mechanics and local realism goes through, and
then it can be regarded as a direct measure of the degree of ‘nonlocality’ inherent in such
equations (6)–(9).
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It is readily shown that the fulfilment of the conditions in (7)–(9) is equivalent to the
fulfilment of the following:

tan αk/tan βk−1 = −α/β for k = 1 to K (10)

tan βk/tan αk−1 = −α/β for k = 1 to K (11)

tan α0 tan β0 = α/β. (12)

For a given quantum state (that is, for a given value of the ratio α/β), equations (10)–(12)
contain 2K + 2 independent variables (αk, βk) and 2K + 1 conditions. A glance at (10)–(12)
tells us that they determine all but one of the 2K + 2 variables, that is, once the value of one of
the 2K + 2 variables is given (call this particular variable the free variable), then the remaining
2K + 1 variables get automatically fixed. Multiplying all 2K + 1 conditions in (10)–(12), we
obtain the constraint

tan αK tan βK = (α/β)2K+1. (13)

In what follows we choose αK to be the free variable, so that the constraint in equation (13)
should be read as

tan βK = (α/β)2K+1 cot αK. (14)

Now let us look at the probability PK in equation (6). This probability is given by

PK = α2 cos2 αK cos2 βK + β2 sin2 αK sin2 βK − 1
2αβ sin 2αK sin 2βK. (15)

But, as we have just seen, the variables αK and βK are constrained to obey relation (14). Thus,
using (14) in (15) we obtain

PK = α2[1 − (α/β)2K ]2 cos2 αK

1 + (α/β)4K+2 cot2 αK

. (16)

Equation (16) is the most general expression for the probability in (6) that is obtained when
the conditions in (7)–(9) are satisfied. Expression (16) was already obtained elsewhere for the
particular case in which K = 1 [6]. From (16) it is apparent that PK = 0 whenever α = β, that
is, no contradiction with local realism arises for the maximally entangled state. It also vanishes
for α = 0 or β = 0 (i.e. for product states), as well as for αK = nπ/2 (n = 0,±1,±2, . . .).
Now we search for the value of tan2 αK which, for fixed value of α/β, maximizes the
probability (16). Recalling the trigonometric identity cos2 αK = (1 + tan2 αK)−1, and making
the identification x ≡ tan2 αK , this problem is equivalent to finding the value of x that
minimizes the function

f = 1 + x + (α/β)4K+2 1

x
+ (α/β)4K+2. (17)

From (17) it is readily shown that ∂2f/∂x2 remains finite and positive for all αK �= nπ/2. So,
imposing the condition ∂f/∂x = 0, we find that the value of x ≡ tan2 αK that maximizes PK

is

tan2 αK = (α/β)2K+1. (18)

Comparing equations (18) and (13), we can see that the condition in (18) is fulfilled if,
and only if, tan βK = tan αK . But, if tan βK = tan αK , then the fulfilment of the conditions in
(10) and (11) immediately implies that tan βk = tan αk for the remaining k = 0, 1, . . . ,K − 1.
This amounts to having βk = αk + nπ for each k. Without loss of generality we may choose
the solution βk = αk . Thus we have shown that, as claimed, the probability (6) is maximized
when the measurement setting αk of the apparatus at one end is equal to the corresponding



9108 J L Cereceda

Table 1. Numerical values of r1 = α/β and r2 = β/α giving the maximum probability P max
K for

the cases K = 1 to 10. r1 and r2 turn out to be the values of the (nontrivial) real zeros of the
polynomial mK(x) (see figure 1).

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

r1 0.464 0.569 0.636 0.683 0.718 0.745 0.767 0.785 0.800 0.813
r2 2.153 1.754 1.571 1.463 1.392 1.341 1.303 1.273 1.248 1.229
P max

K 0.090 0.174 0.231 0.270 0.299 0.322 0.339 0.354 0.365 0.375

measurement setting βk of the apparatus at the other end. The optimized probability is easily
obtained by using (18) in (16). This gives

PK =
(

αβ2K+1 − βα2K+1

β2K+1 + α2K+1

)2

(19)

which was originally derived by Hardy [2, 3]. As shown in [2, 3], the maximum value of PK

is (50 − δ)% which is realized for K → ∞ and a state that is not quite maximally entangled.
We note that the probability (19) fulfils the symmetry property PK(α, β) = PK(β, α).

This means that if the value r1 = α/β maximizes PK then the same holds true for the value
r2 = β/α. It can be shown that the values r1 and r2 = 1/r1 which, for a given K, maximize
(19) correspond to the two nontrivial real roots of the polynomial equation1

mK(x) = x4K+3 − (1 + 2K)x2K+3 − 2Kx2K+2 − 2Kx2K+1 − (1 + 2K)x2K + 1 = 0. (20)

Since r1, r2 > 0 and r1r2 = 1 then necessarily one of r1 or r2 (say r1) is less than 1, while the
other is greater than 1 (note that we can never have r1 = r2 = 1 because this corresponds to
the maximally entangled state for which PK = 0). Equation (20) can be solved numerically
to obtain the roots r1 and r2 for any given value of K. It can be seen that, as K → ∞, then
r1 → 1− and r2 → 1+, so that r2 − r1 → 0. In table 1 the values of r1 and r2, as well
as the maximum probability P max

K = PK(r1) = PK(r2), are listed for K = 1 to 10. Also,
in figure 1, mK(x) (for K = 1 to 10) is represented graphically for values of x lying in the
interval [0, 0.85].

3. CHSH-type inequality for the ladder experiment

So far we have tacitly assumed that the measurement apparatuses behave ideally. However,
a real experiment testing the quantum predictions in (6)–(9) does require the use of a Bell
inequality because, in practice, it is not possible to attain the perfect correlations on which the
ladder nonlocality contradiction relies. The Bell inequality used in the experiment reported in
[3] is (see equation (20) of [3])

P(AK = +1, BK = +1) � P(A0 = +1, B0 = +1)

+
K∑

k=1

[P(Ak = +1, Bk−1 = −1) + P(Ak−1 = −1, Bk = +1)]. (21)

In the ideal case, inequality (21) is violated by quantum mechanics by an amount equal to PK

since all terms on the right-hand side of (21) vanish. In [3], it is mentioned that inequality (21)
can be derived following the method described in [5]. Incidentally, we would like to point out

1 The other (trivial) real root of the polynomial mK(x) is equal to −1 (with multiplicity 3). The remaining 4K − 2
roots of mK(x) are complex.
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Figure 1. Plot of mK(x) for K = 1 (leftmost curve) to K = 10 (rightmost curve), and
0 � x � 0.85. The intersection point of the curve mK(x) with the central, horizontal axis
determines the value of r1(K).

that, actually, the Bell inequality which is obtained by following the procedure in reference
[5] is not inequality (21) but, instead, what is obtained is the related Bell inequality2

P +(AK,BK) � P +(A0, B0) +
K∑

k=1

[P−(Ak, Bk−1) + P−(Ak−1, Bk)] (22)

where

P +(Ak, Bk′ ) = P(Ak = +1, Bk′ = +1) + P(Ak = −1, Bk′ = −1) (23)

and

P−(Ak, Bk′ ) = P(Ak = +1, Bk′ = −1) + P(Ak = −1, Bk′ = +1). (24)

We are going to show that, for the case in which the conditions in (7)–(9) are satisfied, quantum
mechanics violates inequality (22) by an amount equal to 2PK . To see this, we first write (22)
in the equivalent form

SK = P +(AK,BK) − P +(A0, B0) − 2
K∑

k=1

P−(Ak, Bk−1) � 0 (25)

where we have used the fact that quantum mechanics predicts P±(Ak, Bk′) = P±(Ak′, Bk).
We consider the case in which the settings αk and βk′ are such that

tan αk = (−1)k(α/β)k+ 1
2 (26)

tan βk′ = (−1)k
′
(α/β)k

′+ 1
2 (27)

2 It should be noted that, for the case K = 1, inequality (22) can be put equivalently as P −(A0, B0) + P +(A0, B1) +
P +(A1, B0) + P +(A1, B1) � 3, which is a form of the CHSH inequality.
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(cf equation (25) of [3]). Relations (26) and (27) are obtained from (10)–(12) by imposing
that αk = βk. For settings αk and βk′ fulfilling (26) and (27) it can be shown that the quantum
prediction for the sum of probabilities in (23) and (24) is given by

P +(Ak, Bk′ ) = 1 + x2(k+k′+1) − 4
(

x
1+x2

)
(−1)k+k′

xk+k′+1

(1 + x2k+1)(1 + x2k′+1)
(28)

and

P−(Ak, Bk′ ) = x2k+1 + x2k′+1 + 4
(

x
1+x2

)
(−1)k+k′

xk+k′+1

(1 + x2k+1)(1 + x2k′+1)
(29)

where k, k′ = 0, 1, . . . ,K and x ≡ α/β. Of course we have P +(Ak, Bk′ ) + P−(Ak, Bk′) = 1
and P±(Ak, Bk′) = P±(Ak′, Bk). Also we note that expressions (28) and (29) remain
unchanged under the transformation x → 1/x. Now, using (28) and (29), it can be seen that

P +(A0, B0) = (1 − x)2

1 + x2
(30)

P +(AK,BK) = 1 + x4K+2 − 4x2K+2

1+x2

(1 + x2K+1)2
(31)

and
K∑

k=1

P−(Ak, Bk−1) = x(x − 1)(x2K − 1)

(1 + x2)(1 + x2K+1)
(32)

so that

SK = 2x2

1 + x2

(
1 − x2K

1 + x2K+1

)2

= 2PK (33)

(cf equation (19)). So, in the ideal case, the inequality SK � 0 is violated by quantum
mechanics by an amount 2PK , with the maximum violation SK → 1 occurring in the limit
K → ∞ and x → 1. In this same limit, we have that P +(A0, B0) → 0, P +(AK,BK) → 1
and P−(Ak, Bk−1) = P−(Ak−1, Bk) → 0 for k = 1 to K.

It is worth noting that, in the limit considered, a direct contradiction between quantum
mechanics and local realism emerges. Indeed, in order for a local hidden variable theory (LHV)
to reproduce the quantum predictions in the above limit, the following 2K + 2 conditions must
be met:

A0B0 = −1

A1B0 = +1

A0B1 = +1

. . .

AkBk−1 = +1

Ak−1Bk = +1

. . .

AKBK = +1

where Ak (Bk) denotes the result (+1 or −1) of the measurement of the observable Ak (Bk).
In the context of an LHV theory, the values of Ak and Bk can be regarded as elements of
physical reality [7] corresponding to the observables Ak and Bk . However, the above 2K + 2
relations cannot be satisfied simultaneously since each quantity Ak and Bk appears twice on
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the left-hand side. Hence, the product of all these 2K + 2 relations must be equal to +1 on
the left-hand side, but equal to −1 on the right-hand side. This result indicates that, in order
to get a direct contradiction between quantum mechanics and local realism for two spin-half
particles, it is necessary to consider an infinite number of observables per particle [5]. By
contrast, for systems consisting of three or more spin-half particles a direct contradiction can
be obtained with only two observables per particle [8, 9].

4. Conclusion

In summary, in this paper we have extended the ladder proof of nonlocality for two spin-half
particles given in [2, 3] to the case in which the settings of the measurement apparatus are
initially specified by the independent parameters αk and βk (k = 0, 1, . . . ,K). We have shown
that the proportion PK of particle pairs contradicting local realism is maximized whenever
αk = βk for each k. It is this latter case which is considered in [2, 3]. On the other hand,
we have mathematically characterized the values r1 = α/β and r2 = β/α maximizing the
probability (19) obtained by Hardy as being the two nontrivial real roots of the polynomial
mK(x) in equation (20). Finally, we have written down a Bell inequality in equation (22) for
which, for the experiment in question, quantum mechanics predicts an amount of violation
which is twice the amount by which quantum mechanics violates the Bell inequality (21)
considered in [3], inequality (22) being a generalization of the CHSH inequality to arbitrarily
many settings (observables) per particle.
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